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Beyond the harmonic bending theory of ionic surfactant interfaces
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There is now a broad understanding of how electrostatics, described by the nonlinear Poisson-Boltzmann
equation, contributes to the phenomenological coupling~bending! constants of the flexible surface model as
applied to ionic surfactant interfaces when the curvature energy density is truncated at harmonic order. Here,
we extend this to the constants associated with anharmonic terms, specifically at third order in the interfacial
curvatures, using model aggregates of spherical and cylindrical geometry. We analyze in detail the two limits
of excess added salt and counterions only, and also provide a simple construction for bridging these two
extremes using the theory ofu functions. Further, we investigate the asymptotic nature of the curvature
expansion for ionic membranes, showing that it progressively deteriorates as the aggregate curvature is in-
creased, and offer an alternative approximation scheme for the full free energy, using the method of Pade´
approximants.@S1063-651X~98!00405-X#

PACS number~s!: 68.10.Et, 82.65.Dp, 62.20.Dc
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I. INTRODUCTION

The flexible surface model of surfactant interfaces@1#
provides a useful phenomenological tool for the understa
ing of mesophases formed by amphiphilic molecules in
lution. As a phenomenological theory, it offers insight in
the physics of these systems by subsuming a great de
molecular detail~both in terms of structure and interaction!
into its parameters. The aim of expressing these parame
in terms of molecular quantities stems from a natural de
to understand physical systems from a fundamental pers
tive, and also to allow a correspondence to experime
variables~e.g., composition, temperature! to be made.

This goal has, in part, been achieved for ionic surfact
systems. Expansions of the Poisson-Boltzmann~PB! equa-
tion, a mean-field description of electrostatic interactions
systems with charged interfaces and ions in solution, h
allowed the incorporation of electrostatic effects into the c
vature description@2–16#. Rather than give a detailed ove
view here, we refer the reader to reviews as given in R
@17# and the Introduction of Ref.@13#. Suffice it to say that
within the PB description, we now understand how the be

ing rigidity kc , saddle-splay modulusk̄c , and the product
kcH0, whereH0 is the membrane spontaneous curvature,
have as functions of salt and surfactant concentration,
the surface charge density of the interfacial film.

The three bending ‘‘constants’’ just described are the c
pling constants associated with an expansion of the curva
free energy density to harmonic~second! order. While this
has been considered an adequate description for many
tems, the relative stability of certain phases, such as the
continuous cubics@18#, sponges and bicontinuous micro
emulsions@19#, and lamellar phases with passage defe
@11#, requires the extension of the scheme to higher ord
an issue first considered by Mitov@20#. In a recent review,
Morse @21# has underscored the role of anharmonic con
571063-651X/98/57~5!/5694~13!/$15.00
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butions in lifting the degeneracy of the harmonic bendi
energies for such phases. In this context, it is importan
our view to find definitive criteria as to when the truncat
curvature expansion fails to remain an adequate approxi
tion to the full system free energy, and indeed to reso
whether or not the addition of the first anharmonic correct
terms actually improves the situation significantly. The re
lution of this issue hinges fundamentally on the asympto
nature of the expansion. Thus the general aim is to test
validity of the commonly used curvature description, and
suggest ways of extending the range of its applicabi
where possible.

The study most closely related to the present one is c
tained in Ref.@15#, which employs an undulating planar ge
ometry to deduce the electrostatic contribution to moduli
sociated with fourth-order terms. Also, McAvity@10# has
calculated the third-order moduli in the limit of low surfac
charge density, where the PB equation can be lineariz
using a general surface deformation, and de Vries@11# de-
rived scaling laws for one of the fourth-order moduli~that
associated with the square of the Gaussian curvature!. All of
these studies, while extending the traditional curvature
pansion to anharmonic terms, have been restricted to the
treme of excess electrolyte~i.e., effectively isolated inter-
faces!. In the current study we seek to carry this sam
extension in geometrical order across the full regime of s
tem composition~i.e., confinement!.

To this end, we present herein several developme
First, we consider PB cell models of spherical and cylind
cal aggregates, and deduce the electrostatic contributio
the moduli associated with third order in the~monolayer!
film curvatures. These contributions are derived without a
limiting assumptions as to the composition, and are
pressed in a compact integral form. We then give expl
analytical expressions for all moduli, up to third order, at t
two extremes of salt concentration, namely, excess salt
counterions only. Moreover, we present a method, based
5694 © 1998 The American Physical Society
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57 5695BEYOND THE HARMONIC BENDING THEORY OF IONIC . . .
the theory ofu functions, for developing the general formu
las about these two limiting cases, providing greatly simp
fied, yet highly accurate, approximations spanning all int
mediate salt concentrations. This technique, wh
significantly reduces the computational difficulties in mod
ing ionic surfactant phases, is illustrated with the formu
for the harmonic-order moduli.

To probe the validity of the curvature expansion~at least
as regards the electrostatic contributions! at the second and
third orders, we compare its predictions with the exact
merical solutions for the PB cell models. The comparis
clearly demonstrates that, as the monolayer radius of cu
ture is decreased~e.g., to around the Debye screening leng
in the case of excess salt!, the harmonic truncation ceases
remain a faithful representation of the free energy. Furth
more, the improvement given by adding anharmonic corr
tions eventually leads to even greater spurious divergenc
these high curvatures. This is to be expected; however,
we will provide an alternative scheme which may, in som
cases, offer a remedy: the curvature expansion can be re
using the method of Pade´ approximants, to provide a goo
approximation to the full electrostatic free energy over
much broader range of curvatures.

II. BENDING ENERGY AND ELECTROSTATIC
FREE ENERGY

We begin with the classical Helfrich Hamiltonian@1#,
where the local curvature energy per unit area of interfa
surface,gc , expanded to harmonic order, is given by

gc52kc~H2H0!21 k̄cK, ~1!

whereH5(1/R111/R2)/2 andK51/(R1R2) andR1, R2 are
the two principal radii of curvature of the interface.

We consider adding to this second-order description
next- ~i.e., third-! order corrections derived by Mitov@20#. In
general, there are three such geometrical invariants at t
order: the mean and Gaussian curvature productsH3 and
HK, together with the surface Laplacian ofH, leading to the
combination

l1H31l2HK1l3¹n¹nH. ~2!

Here ¹ denotes the covariant differentiation given by t
surface metric@22#. In this paper we shall focus on the fir
two of the three terms in Eq.~2!. The Laplacian term can, in
precisely the same manner as the saddle-splay term in
~1!, be reduced to a contour integral around the boundar
the surface via the divergence theorem. Accordingly, it d
not enter into consideration for many geometries of inter
most importantly the cylindrical and spherical geometr
which we shall address here. Combining Eqs.~1! and~2!, the
curvature free energy expansion up to third order for
cylinder and sphere of radiusR gives, on differentiation with
respect to 1/R,

Dc[
]gc

]~1/R!
522kcH01kc

1

R
1

3

8
l1

1

R2
, ~3a!
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Dc[
]gc

]~1/R!
524kcH012~2kc1 k̄c!

1

R
13~l11l2!

1

R2
,

~3b!

respectively.
In the cell model, the system of ionic surfactant, 1:1 ele

trolyte and oil, is divided into identical cells, of either cylin
drical or spherical geometry. Each cell has a hydrocarb
core sheathed with a surfactant monolayer, the char
groups of which are idealized as a uniform surface cha
density2s at radiusR. The surrounding electrolyte is con
fined by a concentric neutral boundary at radiusR1d. As-
suming a Boltzmann distribution of both counterions (1e)
and coions (2e), the electrostatic potentialc in R<r<R
1d must satisfy the Poisson-Boltzmann equation

d2c

dr2
1

x

r

dc

dr
5

4pe

«
@n2

c exp~bec!2n1
c exp~2bec!#,

~4!

wherex51 for cylinders andx52 for spheres. The bound
ary conditions are

dc

dr
5

4ps

«
at r 5R, ~5a!

c,
dc

dr
50 at r 5R1d. ~5b!

The coefficientsn6
c in Eq. ~4! are the number densities o

counterions and coions at the cell boundary, and relate to
chemical potentials of salt (ms) and water (mw).

For comparison with Eq.~3! we require the electrostati
free energy per unit area of charged surface,gel , and in
particular its variation withR at fixed total area. In a previ
ous study@13# we derived the following convenient expre
sion for the derivative with respect to 1/R:

Del[
]gel

]~1/R!
5

x

11x

«

4p
RE

R

R1d

drFR

r
2S r

RD xG S dc

dr D 2

,

~6!

which we shall make use of again here. With varyingR we
maintain a fixeds value and are free to impose a further tw
constraints on theR dependence of the parametersn6

c andd.
In Ref. @13#, we addressed three scenarios of physical
evance. In the first case the chemical potentialsms and mw
were both fixed, and accordingly the total amounts of s
(Ns) and water (Nw) could vary. The other two cases we
fixed ms andNw , and fixedNs andNw . In the present work
we focus on the first case, and thus fixn6

c on varyingR.
Although Eq. ~6! only explicitly involves the electric

field, it still requires the solution of the nonlinear PB equ
tion ~4!. This cannot be obtained analytically for finiteR,
except for the special situation of the cylindrical geome
with no added salt (n2

c 50). In the following section we
assume thatR is sufficiently large that the equation can b
developed in powers of 1/R about the planar state (R5`).
Comparison with Eq.~3! for the two geometries then permit
identification of the electrostatic contribution to the gene
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elastic constantskcH0, kc , k̄c , l1, andl2 of the curvature
expansion of Eqs.~1! and~2!. We then solve Eq.~4! numeri-
cally at finiteR to compare the exact values of the derivati
in Eq. ~6! with the asymptotic expansion. This allows us
make conclusions, within the cell model, as to the range oR
values over which each successive order of the asymp
expansion gives an accurate and useful approximation.

III. EVALUATION OF THE MODULI

A. Curvature expansion

In the planar reference state, denote the correspon
values ofn6

c andd asn6,0
c andd0. We use the planar bound

ary value of the counterion number density to define a len

lD5S «

2pn1,0
c be2D 1/2

. ~7!

This length is then used to scale distance from the char
surface,x5(r 2R)/lD , and the cell thickness,D5d/lD , in
both the cylindrical and spherical geometries, which we th
expand in ascending powers oflD /R. So we write n6

c

5( i 50
` n6,i

c (lD /R) i and D5( i 50
` Di(lD /R) i , where Di

5di /lD . We then seek the corresponding developments
the reduced potentialf5bec, i.e., the coefficientsf i . In
particular, we need to expand to second order (i 50,1,2) to
determine the set of elastic constantskcH0, kc , k̄c , l1, l2.

The reduced potential for the plane,f0, satisfies the dif-
ferential equation

f0952@a0 exp ~f0!2 exp ~2f0!#, ~8!

where the prime denotesd/dx. Here we have introduced th
ratio a05n2,0

c /n1,0
c which ranges from 0~for counterions

only! to 1 ~for excess salt!. The solution of Eq.~8! gives
elliptic integrals of the first kindF:

x5F~u0 ,a0
1/2!2F~u0

s ,a0
1/2!, ~9!

where exp (f0/2)5sinu0 and u0
s is the value ofu0 at the

charged surface. Inverting this relation givesf0(x) as the
logarithm of a Jacobi elliptic function, with the scalin
lengthlD given by the boundary condition~5a!:

lD

lGC
5cotu0

s~12a0 sin2u0
s!1/2. ~10!

Here, we have absorbed the~conserved! value ofs into the
Gouy-Chapman lengthlGC5«/(2pbes). The pair of pa-
rametersa0 and u0

s carried in Eqs.~9! and ~10! may be
readily eliminated in terms of the relevant pair of syste
properties~mentioned above! to be conserved on bending.

We then perform the perturbation of the differential equ
tion ~4! together with the boundary conditions~5! to obtain
the next two correctionsf1(x) and f2(x) for both x51
~cylinder! andx52 ~sphere! in terms of this planar solution
For the case of conservation ofms and mw ~so n6,1

c 5n6,2
c

50) f1 must satisfy the differential equation

f1922@a0 exp ~f0!1exp ~2f0!#f152xf08 ~11!
tic

ng

th

ed

n

of

-

andf2 is in turn a solution of

f2922@a0 exp ~f0!1exp ~2f0!#f2

52xf181xxf081
1

2
f09f1

2 . ~12!

The perturbation in the potential is then inserted into Eq.~6!
to provide the corresponding development ofDel in powers
(lD /R) i . The coefficients fori 50 and 1 were derived in the
previous study@13#, while that for i 52 is given by

2
«

4p~be!2E0

D0
dx xF2xf08f281x~f18!21~x22!xf08f18

1
x

x11
x2~f08!2G . ~13!

The elimination off1 andf2 from Eq.~13! follows from the
same procedure as was used previously and will not be
tailed here. Suffice it to say that the manipulation at t
higher order is considerably more involved but again o
relies upon the defining differential equations~11! and ~12!
and not their explicit solutions. This elimination from E
~13! gives, both for cylinders and spheres, a simplified fo
for the coefficient which, like those fori 50 and 1, contains
only the derivatives off0 and in particular, moments of th
square of the electric field for the plane

E~ j !~x!5E
x

D0
dx xj~f08!2. ~14!

B. Expressions at general system composition

In the previous study@13# we showed that

kcH05
«

8p~be!2
E~1!~0! ~15!

and

k̄c52
«lD

4p~be!2
E~2!~0!. ~16!

Moreover, the dependence off1(x) on the particular choice
of closure constraint canceled from Eq.~16!, thus verifying
the general predictions of the pressure-profile approach@13#.
The formula forkc does, however, depend on which of th
three constraints is imposed. For the case of fixedms and
mw , we found that

kc5
«lD

4p~be!2E0

D0
dx ~f08!21

d

dx
@~E~0!!2/f09#. ~17!

The electrostatic contribution to the third-order modul
l1 is obtained by equating the simplified form of Eq.~13! for
x51 with the coefficient3

8 l1 /lD
2 from the curvature free

energy expansion Eq.~3a!. Its partnerl2 is then isolated by
equating the simplification of Eq.~13! for x52 to the coef-
ficient 3(l11l2)/lD

2 from Eq. ~3b!. The final formula for
l1 is
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l152
«lD

2

p~be!2H ~E~0!/f09!21
1

3
@f08f0-2~f09!2#

3@E~0!/~f08f09!#31E
0

D0
dx x~E~0!/f08!2

1E
0

D0
dx ~E~0!!3/~f08!4J . ~18!

Note that in the first two of the four terms, allE(0) and
derivatives off0 should be evaluated at the charged surfa
x50. Forl2 we obtain

l25
«lD

2

p~be!2E0

D0
dx ~f08!21

d

dx
~E~0!E~1!/f09!. ~19!

The formulas in Eqs.~15!–~19! are general in the sens
that no limitations have been imposed on the parametersa0

andu0
s characterizing the planar-state solution in Eqs.~9! and

~10! @23#. In Ref. @13# we insertedf0 into Eqs. ~15!–~17!
and integrated numerically to generate the values of th
electrostatic contributions tokcH0, k̄c , and kc for typical
ranges of added salt concentration, surfactant volume f
tion, and headgroup area. Values for the corresponding
tributions to the third-order modulil1 andl2 can similarly
be obtained in a straightforward manner from Eqs.~18! and
~19!, albeit with the restriction to the case of fixedms and
mw . However, in this study we shall focus on the two e
tremes of electrostatic screening, namely, the situation
which salt is either present in excess (a051) or absent al-
together (a050), while maintaining an arbitraryu0

s . These
two extremes are often experimentally relevant and well
scribe the general trends, with the advantage of yield
compact analytic formulas for the moduli. Most important
these two end points of thea0 range admit analytic develop
ments which, owing to their rapid convergence, can be
garded as essentially exact forms even at the lowest leve
truncation.

C. Excess salt

In this extreme the surfactant aggregate is effectively i
lated, i.e., the cell thicknessd0 is infinite and the numbe
densitiesn6,0

c at the cell boundary take on the bulk numb
densitynB of the 1:1 electrolyte. Accordingly, all three cas
of constraints onms , mw , Ns , Nw mentioned above becom
identical. It is now more convenient to switch fromlD in Eq.
~7! to a scaling length equal to one-half of this, the stand
Debye screening length

k215S «

8pnBbe2D 1/2

. ~20!

The moduli are then functions of the single variab
k21/lGC, aside from the dimensioned facto
«/@p(be)2#k2(m21) multiplying each, wherem is the order
of the curvature free energy term~i.e., m51 for kcH0, m

52 for kc and k̄c andm53 for l1 andl2).
e

se

c-
n-

in

-
g

-
of

-

d

The formulas for the general third-order moduli in Eq
~18! and~19! in this excess-salt limit are given in Append
A, where we also provide the previously established res
for kcH0, k̄c, andkc . In addition, we have included there th
corresponding formula for the modulus of one of the four
order terms in the curvature free energy expansion. At fou
order eight independent terms entergc , although for cylin-
drical or spherical geometries these reduce to the three p
ucts ofH andK @20#,

16k1H414k2H2K1k3K2. ~21!

Further, the latter two vanish for the cylinder so the ne
order correction to Eq.~3a! is just 4k1 /R3. The formula for
this modulusk1 is given in Eq.~A8! and was obtained by
analyzing the anharmonic undulations of an isolated char
sheet@15#. We shall consider the effect of this extra corre
tion in subsequent sections, however we shall not go bey
third order for the sphere. Note that the formulas~A1!–~A8!
pertain to an arbitrary value of the ratiok21/lGC.

If the surface is weakly charged and/or highly screen
~so thatk21/lGC!1) then all of the moduli in Eqs.~A3!–
~A8! vanish according to the asymptotic form

C
«

p~be!2

k2~m11!

lGC
2

, ~22!

whereC is a number andm is again the order of the expan
sion. The values ofC for kcH0, kc , k̄c , l1, l2, andk1 are
1/8, 3/8,21/4,23/2, 1, and 63/256, respectively. In partic
lar, these scaling forms forl1 and l2 agree precisely with
the conclusions of McAvity@10#. In this low charge limit the
PB equation can be linearized and Eq.~6! can be evaluated
for an arbitrary radiusR. For the sphere this gives the simp
Debye-Hückel result

Del52
«

2p~be!2S k21

lGC
D 2S 11

1

kRD 22

~23!

while for the cylinder

Del52
«

2p~be!2S k21

lGC
D 2H ~kR!2S FK0~kR!

K1~kR!G
2

21D
1kR

K0~kR!

K1~kR!J , ~24!

whereK0 and K1 are the modified Bessel functions of th
second kind of orders 0 and 1. Expansion of the solution
powers ofk21/R and matching to Eq.~3! duly restores the
above results for the coefficientsC of these moduli and in-
deed can be trivially extended to higher orders. For
sphere the coefficient of 1/Rm21, m>1, in Eq.~23! is given
by Eq.~22! with C5(21)mm/2, so, in particular,C51/2 for
the combination 16k114k21k3 in Eq. ~21!. In the cylindri-
cal geometry, Eq.~24!, the general formula for theC corre-
sponding to the power 1/Rm21 is more complicated, but the
first few values can be calculated in a straightforward m
ner; we find that C521/4, 3/8, 29/16, 63/64, and
2135/64 form51 to 5, respectively.
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In the opposite limit of high charge and weak screen
~so thatk21/lGC@1 and the PB equation cannot be linea
ized!, all of the moduli diverge. The first-order modulu
kcH0 diverges logarithmically,

kcH0;
«

2p~be!2
ln ~k21/lGC!, ~25!

and the higher-order (m>2) coefficients follow the power-
law form

C8
«

p~be!2
k2~m21!. ~26!

Here the value of the numerical factorC8 for kc , k̄c , l1, l2,
andk1 is 1/2,2p2/6, 23/2, p2/6, and 53/192, respectively

In Fig. 1~a! the six moduli in Eqs.~A3!–~A8! are plotted
over a broad range ofk21/lGC on a logarithmic scale„with
their dimensioned prefactors«/@p(be)2#k2(m21) removed
for comparison…. The moduli all maintain the same sig
throughout and monotonically increase in magnitude. By v
tue of the common power laws in Eqs.~22! and ~26!, the
dimensionless ratiosl1k/kc , l2k/kc , and k1k2/kc do not
vary markedly across this entire range, e.g.,l2k/kc rises
from 2.67 up to only 3.29. In Fig. 1~b! we plot the particular
combinations 2kc1 k̄c and l11l2 ~again rendered dimen
sionless by omission of the prefactor mentioned abo!
which enter into the sphere expansion in Eq.~3b!. In contrast

FIG. 1. Plots of~a! the six individual moduli considered in thi
study, and~b! the two combined coefficients in spherical geomet
for the case of salt in excess, ranging from low to high surfa
charge. The common prefactor~given in the text! has been removed
from each.
g

-

to the individual moduli, and hence to the cylinder expa
sion, these combinations change sign and are nonmonot
The dimensionless 2kc1 k̄c has a maximum of 0.301 a
k21/lGC51.77 and changes sign at 6.64. The correspond
third-order suml11l2 reaches a minimum of20.095 at
k21/lGC50.765, crosses the axis at 1.60, and attains
maximum of 0.162 at 7.04. Thus for the sphere up to th
order, the rangek21/lGC divides into three intervals. As
k21/lGC increases beyond 1.60,Del still increases from
1/R50 but switches from downward to upward curvin
while beyond 6.64 it becomes decreasing from 1/R50.

In the second part of Appendix A we use these forego
results as a basis for pseudo-closed formulas for the mo
at arbitrary composition in Sec. III B. These formulas ser
to eradicate the unnecessary complications of integrating
wieldy elliptic functions, or resort to numerical method
This broadly applicable analytical technique proceeds by
placing elliptic functions withu functions, and accordingly
rewrites the slowly convergent series ina0 or 12a0 as pow-
erfully converging expansions in the corresponding ‘‘nom
@24#. The fundamentals have been described in detail by N
ham and Parsegian@25# in the context of charge regulatio
models; here we furnish only the final expressions. Equati
~A9!–~A15! give the harmonic modulikcH0, k̄c , and kc ,
truncated at the second power in the nome. These appr
mations remain extremely accurate froma051 down to be-
low a051/2, thus spanning the majority of the parame
space from excess salt to counterions only.

D. Counterions only

In the absence of added salt there are no coions pres
so thatn2,0

c , and a0, are zero. For this extreme the co
straints of fixedms , Nw and fixedNs , Nw become identical,
but remain distinct from the case of fixedms , mw which we
consider here. Although the scaling lengthlD in Eq. ~7! is
now a natural analog of the excess-salt variablek21, we
shall use the planar cell widthd0 here and regard the modu
as functions of the ratiod0 /lGC with the dimensioned pre
factor «/@p(be)2#d0

m21. In the first part of Appendix B we
evaluatel1 andl2 @Eqs. ~18! and ~19!# in the counterions-
only regime, and also the corresponding expressions
kcH0, k̄c , andkc @from Eqs.~15!–~17!# using the same no
tation.

Without added salt, the PB equation admits an analy
solution for cylindrical symmetry@26,14#

df

dr
5

2

r
$12g tan @g ln ~r /r 0!#%. ~27!

The boundary conditions~5! of the cylindrical cell model
then determine the two parametersg and r 0, and for the
current case of fixed chemical potentials the thicknessd is
also specified as a function ofR, lD , andlGC. In particular,
eliminatingr 0 andd, g must satisfy the transcendental equ
tion

g tan S g ln FlD

R
~g211!1/2G D5

R

lGC
S 12

R

lGC

1

g2
1

1

g2D 21

.

~28!

,
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The derivative in Eq.~6! which we seek here is then given a

Del52
«

4p~be!2H g2112S R

lD
D 2

22~g221! ln FlD

R
~g211!1/2G

12 ln Fg21~R/lGC21!2

g211
G J . ~29!

We now introduce the assumption of largeR/lD and deter-
mine the coefficients of the perturbationg5(lD /R)21

1( i 50
` g i(lD /R) i which meet Eq.~28! at each order. Insert

ing this perturbation into Eq.~29! and expanding, the result
ing terms fori 50, 1, and 2 match precisely the prescripti
in Eq. ~3a! using the formulas in Appendix B forkcH0, kc ,
and l1, respectively. Further, if we proceed toi 53 and
match the resulting coefficient of 1/R3 in Eq. ~29! with the
prescription 4k1 from Eq. ~21! then we obtain the electro
static contribution to this fourth-order modulusk1. This for-
mula is given as Eq.~B8!, and thus provides the counterion
only analog of the excess salt result in Eq.~A8!. Again, note
that, as for excess salt, Eqs.~B1!–~B8! apply for all values of
d0 /lGC.

If the system is weakly charged (d0 /lGC!1), then the
moduli in Eqs.~B3!–~B8! adopt the asymptotic forms

C
«

p~be!2

d0
m11

lGC
2

. ~30!

The numerical factorsC for the six modulikcH0, kc , k̄c , l1,
l2, andk1 are 1/24, 2/15,21/30,28/15, 13/90, and 8/105
respectively. On the other hand, for highly charged surfa
(d0 /lGC@1) the first-order moduluskcH0 becomes loga-
rithmic,

kcH0;
«

2p~be!2
ln ~d0 /lGC!, ~31!

while the moduli for ordersm>2 follow the power law

C8
«

p~be!2
d0

m21 . ~32!

The values ofC8 for kc , k̄c , l1, l2, andk1 are now 0.178,
20.564,20.170, 0.183, and 0.0091. Note that the scalin
~30!–~32! are identical to those for excess salt@Eqs. ~22!,
~25!, ~26!# on interchange ofd0 andk21, as expected from
dimensionality.

Figure 2~a! displays the variation of the six moduli in Eq
~B3!–~B8! between these two limits. The dimension fact
«/@p(be)2#d0

m21 has been divided out of each, andk1 mul-
tiplied by 16 @as it occurs in Eq.~21!# to become clearly
visible on this common vertical scale. The moduli nev
change sign, but as opposed to Fig. 1~a! for excess salt, the
transitions between the two limits are no longer stric
monotonic. The dimensionlesskc has a maximum of 0.181 a
d0 /lGC522.3, whilel1 passes through a very flat sectio
s

s

r

r

from a minimum of20.150 atd0 /lGC53.18 to a maximum
of 20.148 at 6.19. Also 16k1 reaches a maximum of 0.13
at 1.42 and passes through a minimum of 0.123 at 4.04. N
that the curves for the four positive moduli all interse
aroundd0 /lGC52.5 to 2.7. In particular, the pair of curve
for kc andl2 are almost superimposed throughout; the ra
l2 /(kcd0) only varies between 0.933 and 1.08. Figure 2~b!
shows the variation in the second- and third-order combi
tions 2kc1 k̄c andl11l2 ~again in the same dimensionles
form! for the sphere in Eq.~3b!. The trends here are qual
tatively identical to those in Fig. 1~b! for excess salt. The
curve for 2kc1 k̄c has its maximum of 0.170 atd0 /lGC
53.58 and crosses the axis at 22.1. Thel11l2 curve has its
minimum of 20.056 at 1.20, changes sign at 4.84, and ri
to its maximum value of 0.017 at 14.8. Accordingly, th
behavior ofDel local to 1/R50 follows the three-stage pro
gression for excess salt.

Note that the ratio2 k̄c /kc , which dictates the stability
within the harmonic bending energy description, is arou
3.2 in the high charge limit~in which the electrostatics could
be expected to dominate the intrinsic contributions to
moduli!, both for excess salt and counterions only. Furth
the ratio 2l2 /l1, providing its analog at third order, dis
plays similar insensitivity at these two extremes, with a va
around one-third of that for2 k̄c /kc .

In the second part of Appendix B the preceding analy
becomes the foundation for constructing simplified formu
for the bending moduli at arbitrary system compositio
which complement the results in Appendix A. Theu func-
tion technique operates in a completely analogous man

FIG. 2. Analog of Fig. 1 for the opposing extreme of counte
ions only, again ranging from weak to strong charge~the so-called
‘‘ideal gas’’ and ‘‘Gouy-Chapman’’ regimes, respectively!.
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FIG. 3. PB cell models for 250 mM salt in
excess, surrounding an ionic surfactant mon
layer of headgroup area 67 Å2, comparing the
numerical solution with ascending orders of cu
vature expansion. Plots of the first derivative
Del in Eq. ~6! for ~a! cylinders and~b! spheres, of
relatively slight curvatures, together with~c! Del

across a broader range of cylinder~upper! and
sphere~lower! curvatures. See the text for a de
tailed description.
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about this opposing extreme; the final formulas forkcH0, k̄c ,
and kc are given in Eqs.~B9!–~B13!. These expansions
again truncated at the second power, suffice to mainta
very high accuracy froma050 to beyonda051/2. Thus,
when taken together, the two developments bridge the
range of compositions and surface conditions. As one ill
tration of the utility of the formulas, in the highly charge
limit ( tp→` andz0→p/2 in Appendixes A and B, respec
tively! the ratio2 k̄c /kc is simply shown to monotonically
increase witha0 from counterions only to excess salt. So t
abovementioned insensitivity of this stability ratio holds i
dependently of the way in which the limits of vanishing su
factant volume fraction and electrolyte concentration
reached.

IV. COMPARISON WITH NUMERICAL SOLUTION

A. Curvature expansion

In this section, we shall consider particular charged s
tems and compare the exact free energy of their electrost
with its contribution to the curvature free energy at the
ders described in the preceding section. Since we have
rived these contributions to the coefficients in Eqs.~1! and
~2! ~with the exception ofl3) for an unspecified composi
tion, we could in principle relate this to any interfacial co
figuration. However, we will limit our focus here to the cy
lindrical and spherical cells which gave rise to the mod
formulas, to avoid coupling the issue to the validity of the
models for real configurations. Thus, for a given value of
radiusR, we directly compare theDel in Eq. ~6!, using the
exact solution of the PB equation~4!, with its asymptotic
expansion in Eq.~3!. Of course, for sufficiently small 1/R the
curve ofDel will be approximated to increasing accuracy
the succession of terms in Eq.~3!, i.e., the constant~from
order m51), the straight line (m52), the parabola (m
53), and so on. However, asR is decreased the curvatur
approximation must eventually break down, with success
terms introducing an increasingly powerful divergence.

As in the preceding section we illustrate the behavior a
general composition by analyzing the two extremes of exc
added salt and no added salt, addressing in particular the
of bending at fixed counterion chemical potential in the lat
a

ll
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e

-
ics
-
e-

i
e
e

e

a
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ase
r

extreme. In doing so all formulas~A2!–~A8! and~B2!–~B8!
will be used, giving developments of the sphere up to th
order and the cylinder to fourth order by adding them54
term 4k1 /R3 to Eq. ~3a!. To analyze in detail the deviation
of the exact derivativeDel of gel from its asymptotics at
small 1/R it will also prove useful to take a second deriv
tive, so the expansions in Eqs.~3a! and ~3b! become

]Del

]~1/R!
5kc1

3

4
l1

1

R
112k1

1

R2
1•••, ~33a!

]Del

]~1/R!
52~2kc1 k̄c!16~l11l2!

1

R
1••• ~33b!

for cylinders and spheres, respectively.
For excess salt, in the limit of smallk21/lGC, Del was

given by Eqs.~23! and ~24! for spheres and cylinders, an
comparison with their expansions, as discussed there,
comes a simple matter. In both geometries the coefficient
1/Rm21 alternate in sign, however, the power series for
sphere has a radius of convergencek21/R51 while that for
the cylinder is strictly asymptotic. Instead we shall focus
examples in which the nonlinearity is important, and we u
a numerical procedure to generate the exact (dc/dr)2 from
Eq. ~4! for Del in Eq. ~6!. We consider two such scenarios,
both of which the area per charged surfactant headgrou
taken to be 67 Å2 ~andT5298 K for all examples here! so
the Gouy-Chapman lengthlGC51.5 Å. The bulk concentra-
tion of added salt is 250 mM in the first example and 10 m
in the second, so the Debye lengthsk21 are 6.1 Å and 30 Å,
respectively. The ratiosk21/lGC are 4.1 and 20, thus
amounting to situations of moderate and weak screening.
calling Fig. 1~b!, which displays three regimes with increa
ing k21/lGC based on the signs of the moduli combinatio
for the sphere, these two examples lie in the second and t
regimes, respectively.

The results for these concentrations of 250 mM and
mM are summarized in Figs. 3 and 4, respectively. The p
~a! and~b! of both display the second derivative]Del /](1/R)
for cylinders and spheres, respectively, of relatively lar
radius ranging fromR5` down to R55k21. The dotted
curve~Num! is the exact numerical solution, while the sol
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FIG. 4. The analog of Fig. 3 for 10 mM salt in
excess, maintaining the headgroup area at 672.
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with
curves (m) are the asymptotic expansions in Eqs.~33! taken
to curvature orderm. For the sphere case~b! the constant
2(2kc1 k̄c) in Eq. ~33b! switches from positive to negativ
from Fig. 3 to 4 while the straight line slope 6(l11l2)
remains positive. Throughout this range ofR values the
curves for successive orders inm yield increasingly accurate
approximations to the exact curves, however, the deviat
grow rapidly with decreasingR. The errors associated wit
the highest orders,m54 for the cylinder and 3 for the
sphere, are all around 2% atR510k21 but have increased
substantially atR55k21. Also note that for both concentra
tions the third-order expansion is a better approximation
the sphere~b! than for the cylinder~a!. Although the plots in
Figs. 3~a! and 4~a! appear very similar, as do their~b! coun-
terparts, one must bear in mind that thek21 values used in
their scalings differ by a factor of 5.

In Figs. 3~c! and 4~c! we plot the first derivativeDel ~the
cylinder is always above the sphere! from the planar limit
down toR50.5k21, extending the range ofk21/R in ~a! and
~b! by an order of magnitude. The same labeling sche
applies, now with the solid curves (m) being the expansion
to curvature orderm in Eq. ~3!, also including the cubic
polynomial for the cylinder tom54. Out tok21/R50.2 the
curves, which are difficult to distinguish, are just the in
s

r

e

-

grals of those presented in parts~a! and ~b!. Note that the
exactDel for the sphere in Fig. 4~c! passes through a mini
mum, followed by an inflection point@as in Fig. 3~c!#, on its
way to approaching zero. The main feature of these plot
the increasingly dramatic deviations of successive order
expansion ask21/R rises to around order 1. Clearly the cu
vature expansions become completely inappropriate as
proximations for this size of aggregate.

In the opposite extreme of no added salt we again c
sider two examples, in both of which the planar cell widthd0
~the half thickness of the water layer in a lamellar phase! is
taken to be 50 Å. In the first example we assume one cha
per 300 Å2, which might represent a smeared-out model
a monolayer of nonionic surfactant containing some anio
surfactant. The Gouy-Chapman length is then 6.7 Å and
ratio d0 /lGC57.5, so from Eq.~B2! d0 /lD51.39. In the
second example we return to the previous value of o
charge per 67 Å2, and sod0 /lGC534 and thusd0 /lD
51.53. As for the excess-salt examples, these twod0 /lGC
values lie in the second and third regimes of sign combi
tions for the sphere coefficients in Fig. 2~b!. The results for
the area per charge values of 300 Å2 and 67 Å2 are dis-
played in Figs. 5 and 6, respectively. These are plotted
labeled in exactly the same manner as for excess salt,
c-

d-
.

FIG. 5. PB cell models in the absence of ele
trolyte, with the surfactant monolayer~bearing
one charge per 300 Å2) surrounded by a corona
of balancing counterions of thickness correspon
ing to d0550 Å in the planar reference state
The plots~a!, ~b!, and ~c! are as for Fig. 3, now
replacingk21 by this d0.
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FIG. 6. The analog of Fig. 5 for one surfac
charge per 67 Å2, with d0 maintained at 50 Å.
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the change fromk21 to the commond0 value throughout.
The range for~a! and ~b! now extends down toR52.5d0
5125 Å and down to 12.5 Å in~c!. The basic shapes of a
curves in Figs. 5 and 6 are the same as those in Figs. 3 a
respectively. Again in parts~a! and ~b! of Figs. 5 and 6 the
accuracy of the approximations to the exact value of
second derivative improve uniformly with increasing ord
m, with the error growing on decreasingR to around 2–4 %
at 125 Å for the highest orders considered in each case
Figs. 5~c! and 6~c! the same pattern of wild deviations
apparent in the second half of thed0 /R range as the order o
expansion is increased, especially so for the cylinder~the
upper of the two curve sets!. For the sphere, the straight lin
(m52) approximation in Fig. 5~c! and the constant (m51)
for Fig. 6~c! both remain quite reasonable over the wh
range displayed, but this is more by way of accident th
true fit and will certainly not continue to smallerR as Del
tends to zero.

B. Padéapproximants

Recall that in Sec. III we determined the electrostatic c
tribution to the elastic moduli of the curvature free ene
expansion in Eqs.~1! and~2! by matching the coefficients o
successive powers of 1/R in Dc for cylinders and spheres
Eq. ~3!, to those generated by the corresponding asymp
expansion ofDel for the PB cell model in these two geom
etries. We have now seen, through the preceding four
amples, that the resulting power series expansion is c
pletely unsuitable as an approximation to the exactDel for
larger values of 1/R. The only recourse in these circum
stances seems to be a numerical evaluation of the free
ergy. However, we shall now describe a means of recas
the curvature expansion in Eq.~3! to extend its range o
applicability. In particular, we focus on the technique
Padéapproximants.

In this approach our functionDel is instead matched to
rational function in 1/R; its (M ,N) PadéapproximantPN

M is

PN
M~R!5

(
k50

M

ak~1/R!k

(
k50

N

bk~1/R!k

. ~34!
d 4,

e
r
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n-
y

tic

x-
m-

en-
ing

f

We then proceed as before, demanding that the power s
expansion of this given form in 1/R about the planar stat
agrees with that forDel , i.e., that already derived by matc
ing to Eq.~3! ~which is just the special caseN50), up to and
including the power (1/R)M1N. This gives a system of linea
equations for theM1N11 independent coefficientsak and
bk . For example, if the expansion in Eq.~3a! or ~3b! is
written as (k50ck(1/R)k then the corresponding Pade´ ap-
proximantP2

0 for cylinder or sphere is given by

P2
0~R!5

c0

12~c1 /c0!~1/R!1@~c1/c0!22c2 /c0#~1/R!2
,

~35!

with that for P1
0 obtained by removing the (1/R)2 term from

the denominator. Note that, since the Pade´ coefficients are
given directly in terms of theck , and hence the electrostat
contribution to the elastic moduli, we are still using the sa
curvature information, but now in a different manner.

Note that in excess salt the Debye-Hu¨ckel formula ~23!
for weakly charged spheres has precisely the form of a (
approximant in 1/R, in which the denominator is a perfe
square. Thus, inserting into Eq.~35! the coefficients from Eq
~3b! given by their forms in Eq.~22!, this Pade´ approximant
reconstructs the exactDel . For cylinders in this linear limit,
Del in Eq. ~24! is clearly not a rational function in 1/R @nei-
ther is the smallR asymptotic form2(kR)2 ln (kR) of the
braced part#, however the approximants (0,1), (0,2),
(1,2) could still be useful.

We illustrate these Pade´ approximants using the sam
four examples as shown in Figs. 3–6. For the first exam
with 250 mM salt in excess,Del for the cylinder and spher
in Fig. 3~c! are replotted over the same range ofk21/R in
Figs. 7~a! and 7~b! and compared to the approximants (0,
and (1,2), and (0,2), respectively. These approxima
which are guaranteed to match the asymptotics at largeR to
order (1/R)M1N, are no longer dominated by this power asR
increases, and follow the exact curve over most or all of
range. For the cylinder in Fig. 7~a!, even the simplest ap
proximant (0,1) remains reasonably accurate, with its e
rising in magnitude to around 5% ask21/R approaches 2
The higher approximant (1,2), obtained by including
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fourth-order modulus@Eq. ~A8!#, is even better; the deviatio
is quite negligible fork21/R,1 and increases to around 3
at the end point. For the spherical geometry in Fig. 7~b!, the
accuracy of the (0,2) approximant@Eq. ~35!# is more impres-
sive still in its ability to capture the inflection inDel .

For the other three examples~Figs. 4–6! we shall briefly
describe the Pade´ approximants rather than showing full pic
tures. In the second example, with 10 mM salt in excess,
exact Del for the cylinder @in Fig. 4~c!# is also accurately
approximated by the (1,2) form; the error again rises
around 3% atk21/R52. The (0,1) form has now lost accu
racy and is more than 10% above the exact value at this
point, albeit a considerable improvement on the straight
(m52) approximation which uses the same two curvat
moduli kcH0 and kc . For the spherical geometry the (0,2
form used in the first example ceases to be a good appr
mation here, since its justification above via the Deb
Hückel limit no longer applies to a sphere at such lo
screening. For the counterions-only example with the low
surface charge, the approximants (0,1) and (1,2) for
cylinder both follow closely the exactDel @Fig. 5~c!# and
deviate by less than 5% up tod0 /R54. The (0,2) form is

FIG. 7. PB cell models for 250 mM salt in excess and a surf
tant headgroup area of 67 Å2 ~as for Fig. 3!, now comparing the
numerical solution~dotted! with the Pade´ approximants~a! (0,1)
~upper! and (1,2) ~lower! for the cylinder, and~b! (0,2) for the
sphere.
e
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e
e
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again the best choice for the sphere, and is accurate to ar
10%. At the higher surface charge, the curve for the cylin
@the upper in Fig. 6~c!# is approximated within 1% by the
(1,2) form, while the error approaches 10% using (0,
Again, at such high charge the curve for the sphere@the
lower in Fig. 6~c!# cannot be fitted accurately using the (0,2
approximant.

Although the cylindrical geometry with only counterion
present is exactly solvable@Eqs. ~27!–~29!# and so not di-
rectly in need of approximation, these four examples
gether illustrate the trends in the Pade´ approach. Since the
approximants (M ,N) either succeed or fail in both extreme
(a050 and 1! over comparable regimes of surface potent
~i.e., u0

s), this suggests that these same forms apply ac
the entire range 0,a0,1 using theu function develop-
ments of the moduli formulas at general composition@Eqs.
~15!–~19!#.

V. DISCUSSION AND CONCLUDING REMARKS

As stated at the outset, one main purpose of mapping
phenomenological bending energy approach to molec
quantities involves the practical matter of the analysis of
periments which either directly attempt to measure the be
ing moduli, or the interpretation of which relies on som
understanding of how the moduli depend on experimen
variables. There are numerous examples of both case
review of experimental work up to 1994 on measuring t
bending constants, particularly in AOT@sodium bis~2-
ethylhexyl! sulfosuccinate# systems, has been given b
Kellay et al. @27#. Since then, Kegelet al. @28# have
performed ellipsometric measurements of the bending rig
ity of SDS ~sodium dodecyl sulfate! systems, focusing
mainly on the scaling of the moduli with addition of an a
cohol cosurfactant. More recently, Eastoeet al. @29# have
attempted to investigate specifically the electrosta
contribution to the bending moduli of n-alkyl-n-
dodecyldimethylammonium bromide microemulsion dro
lets, using surface light scattering and small-angle neut
scattering. Their work is a good example of how the resu
we have presented herein can be of use. Eastoeet al. base
their experimental analysis on the Mitchell-Ninham
Lekkerkerker@4,5# calculations of the bending moduli in ex
cess salt~although we do not agree with some of their a
sumptions@30#!. Since Eastoeet al.work over a range of sal
concentrations, from zero to an excess of added salt, a
fied treatment of their results requires the generalized form
las ~15!–~17!, for which the rapidly convergent series~in
Appendixes A and B!, bridging these two extremes, can b
directly applied. Furthermore, the radii of the droplets a
'20 Å, and especially for the low salt concentrations, t
harmonic approximation will break down. A reinterpretatio
of these results in terms of the Pade´ scheme presented in Se
IV B would then be more appropriate.

Another interesting development is the observation a
prediction of ‘‘microvesicles,’’ formed by mixed ionic-
nonionic surfactant systems with cosurfactant and water
Oberdisse, Porte, and co-workers@31#. We concur with their
assertion that these microvesicles are of too small radius
the harmonic truncation of the bending energy to be justifi
therefore necessitating a numerical solution of the PB

-
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model; we can suggest that the Pade´ approximants may also
be of value. As a general statement, however, it is not
purpose of this paper to embark on a large-scale reinter
tation of existing experimental data, and we mean here o
to give some indications of how our results may be utilize

We reiterate that the aim of this study has been both
extend and to test the limits of applicability of the curvatu
description of ionic surfactant interfaces. The established
pendence of the harmonic-order moduli on system par
eters has now been extended to their anharmonic ana
The determination of the range of applicability of the curv
ture expansion at these successive orders is especially im
tant, given the scope for highly erroneous predictions outs
these bounds. Also, we have investigated a Pade´ scheme,
which permits a modified curvature description to functi
well as an approximation to the full free energy, even at la
curvatures, and present it as an alternative to a purely
merical approach for dealing with highly curved aggregat
This approach may provide yet a further reason to per
with the highly successful curvature description of surfact
mesophases.

ACKNOWLEDGMENTS

We thank J. Ennis and B. W. Ninham for some very he
ful suggestions. A.F. appreciates support from the Swed
Natural Science Research Council~NFR! for his visit to the
Department of Applied Mathematics, Australian Nation
University, and J.D. is grateful to the Australian Resea
Council for its support.

APPENDIX A: EXCESS SALT

In excess salt (a051) the Jacobi elliptic function for the
planar potentialf0 reduces to a hyperbolic. If we define th
scaled distanceX5k(r 2R), where k21 is the Debye
screening length in Eq.~20!, then the solution in Eq.~9! now
becomes

f052 ln $tanh @~X1Xs!/2#%. ~A1!

Here we have switched from the parameteru0
s to Xs , in

terms of which Eq.~10! becomes

coth Xs[ts5@11~k21/lGC!2#1/2. ~A2!

Equations~15!–~17! then give

kcH05
«

2p~be!2
ln @~ ts11!/2#, ~A3!

k̄c52
«k21

p~be!2E0

ln [ ~ ts11!/2]
du

u

@exp~u!21#
, ~A4!

kc5
«k21

2p~be!2

~ ts21!~ ts12!

ts~ ts11!
, ~A5!

and Eqs.~18! and ~19! become
e
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l152
«k22

6p~be!2

~ ts21!

ts
3~ ts11!2

~9ts
4115ts

3116ts
2124ts18!

~A6!

and

l25
«k22

p~be!2H Eln [ ~ ts11!/~ ts21!]

`

du
u

@exp~u!21#

1F 2~ ts12!

ts~ ts11!
2 ln S ts11

ts21D G ln S ts11

2 D J . ~A7!

The corresponding formula for the fourth-order modulusk1
was shown in a previous study@15# to be

k15
«k23

192p~be!2

~ ts21!

ts
5~ ts11!3

~53ts
71140ts

61155ts
5188ts

4

164ts
31136ts

2196ts124!. ~A8!

We now turn to analyzing the bending moduli at gene
system composition, in Eqs.~15!–~19!. Expressing Eqs.~9!
and ~10! in terms ofu functions@24#, the expansions of the
general formulas about the excess-salt limit are extrem
rapidly convergent; even the lowest-order corrections to E
~A1!–~A8! remain highly accurate approximations far aw
from this limit. Relabeling the modulus of the elliptic inte
gral in Eq.~9! ask[a0

1/25(n2,0
c /n1,0

c )1/2, its complementary
nomeq8 is given by

q85D8~112D84115D881150D8121••• !, ~A9a!

where

D85
1

2S 12k1/2

11k1/2D . ~A9b!

We develop about the limitk51 in ascending powers ofq8;
in all subsequent equations the terms omitted are of o
q84.

By analogy with Eq.~20! we introduce the scaling lengt
kp

21 , given in terms of the generallD in Eq. ~7! as

kp
215

1

2
~112q81••• !2lD . ~A10!

Using the charged boundary condition, phrased in Eq.~10!, it
is convenient to define the auxiliary parametertp @generaliz-
ing ts in Eq. ~A2!#,

tp5@11~kp
21/lGC!218q82#1/21•••. ~A11!

The expansions of Eqs.~15!–~17! in terms ofq8 andtp then
become

kcH05
«

2p~be!2
$ ln @~ tp11!/2#2q82~A212!1•••%,

~A12!
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k̄c52
«kp

21

p~be!2F E0

ln [ ~ tp11!/2]
du

u

@exp~u!21#

1q82~A3/312A!1•••G , ~A13!

and

kc5
«kp

21

2p~be!2S ~ tp21!~ tp12!

tp~ tp11!
1q82H S tp21

tp11D 2

28S tp21

tp11D
22A212AF 8

tp~ tp11!
22S tp21

tp11D21G J 1••• D ,

~A14!

where we have used the abbreviation

A5 ln Fq82S tp11

tp21D G . ~A15!

Corresponding expansions for the third-order moduli in E
~18! and~19! can be derived by following this same prescri
tion.

APPENDIX B: COUNTERIONS ONLY

In the absence of added salt~i.e., a050), the Jacobi el-
liptic function for f0 degenerates to a simple trigonometr
and Eq.~9! becomes

f052 ln @cos~D02x!#. ~B1!

The additional relation~10! specifying the lengthlD ,
throughD05d0 /lD , in terms of the ratiod0 /lGC is then

D0 tan D05d0 /lGC. ~B2!

Equations~15!–~17! simplify to

kcH052
«

4p~be!2
@2 ln ~cosD0!1D0

2#, ~B3!

k̄c5
«d0

p~be!2F 2

D0
E

0

D0
dt ln ~cos t !1

1

3
D0

2G , ~B4!

kc52
«d0

2p~be!2F2 cos 2D02
~12D0

2!

D0
sin 2D01

2

3
D0

2G .
~B5!

Equations~18! and ~19! give the following formulas for the
third-order moduli:

l15
«d0

2

6p~be!2

1

D0
2 $~113D0

2! cos 4D012D0
3 sin 4D0

24~126D0
2! cos 2D024D0~324D0

2! sin 2D0

1~323D0
218D0

4!%, ~B6!
.

,

l252
«d0

2

p~be!2

1

D0
2H 4E

0

D0
dt t ln ~cos t !

12~cos 2D01D0 sin 2D011! ln ~cosD0!

1D0
2 cos 2D01D0

3 sin 2D01S D0
21

5

6
D0

4D J .

~B7!

Equations~B3!, ~B5!, and ~B6! have also been verified b
using the exact solution for the cylindrical cell model wi
counterions only, in Eqs.~27!–~29!, and performing the ex-
pansion inlD /R described in the main text. Continuing th
expansion up to (lD /R)3 we obtain the following formula
for the modulusk1 associated with the free energy cost
fourth order in mean curvature@see Eq.~21!#:

k152
«d0

3

32p~be!2

1

D0
3H 1

3
~2D01D0

3! cos 6D0

2
1

6
~123D0

222D0
4! sin 6D012~2D01D0

3! cos 4D0

2~124D0
223D0

4! sin 4D02S 6D02
71

3
D0

3D cos 2D0

1
1

2S 1227D0
21

106

3
D0

4D sin 2D0

1S 16

3
D022D0

31
36

5
D0

5D J . ~B8!

Note that Eqs.~B5!–~B8! all pertain to the constraint of fix-
ing the counterion chemical potential on bending.

To partner Eqs.~A9!–~A15!, we provide the analogousu
function expansions of the general moduli formulas ab
this opposing extreme of counterions only. We now deve
from k50 in ascending powers of the nomeq, which is
given by Eq.~A9! with the primes removed andk switched
to its complementary modulusk85(12k2)1/2. The terms
omitted in the expansions below are of orderq3.

The auxiliary parameter is labeledz0 @for comparison
with D0 in Eq. ~B2!# and, from the charged boundary cond
tion, is the solution of

z0~ tan z024q sin 2z018q2 cosz0 sin 3z01••• !5d0 /lGC
~B9!

in the range from 0 top/2. The expansions of Eqs.~15!–~17!
are then given by

kcH052
«

4p~be!2
$@2 ln ~cosz0!1z0

2#18q~z0
22sin2z0!

28q2~z0
22sin2z0 cos 2z0!1•••%, ~B10!
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k̄c5
«d0

p~be!2H F 2

z0
E

0

z0
dt ln ~cos t !1

1

3
z0

2G
22qS 22

4

3
z0

22
sin 2z0

z0
D

22q2S 11
4

3
z0

22
sin 2z0

z0
1

1

4

sin 4z0

z0
D1•••J ,

~B11!

and

kc52
«d0

2p~be!2H S 2

3
z0

212P1,1D18qF10

3
z0

21z0 sin 2z0
D

.

A.

,

-
.

14P1,1~cos4z01cos2z012!G232q2F2S 32
29

4
z0

2D
1S 91

13

4
z0

2D sin 2z0

z0
22P1,1~8 cos6z011! cos2z0

2P3,5~cos4z01cos2z012!G1 • • • J , ~B12!

where

Pm,n5mn cos 2z02
1

2
~m22n2z0

2!
sin 2z0

z0
. ~B13!
in
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